Schulinterner Lehrplan

Physik

Sekundarstufe II

Verabschiedete Fassung vom 23. November 2017

Erstellt von Dr. Arnold Schroeder, OStR

Gymnasium Am Turmhof, Mechernich

23.11.2017 Seite 1 von 23

Inhalt

Vorwort	3
Kompetenzbereiche:	3
Basiskonzepte	4
Einführungsphase EPH	5
Einziges Inhaltsfeld der EPH: Mechanik	5
Übersichtsraster Unterrichtsverlauf – gewählte Kontexte:	6
Konkretisierung: Kirmesphysik	7
Konkretisierung: Reise zum Mars	8
Konkretisierung: Musik oder Lärm?	9
Grundkurs Q1 / Q2	10
Übersichtsraster Unterrichtsverlauf Grundkurs Q1 – Schwerpunkte und Leitfragen:	10
Konkretisierung Quantenobjekte und Induktion im Grundkurs	11
Übersichtsraster Unterrichtsverlauf Grundkurs Q2 – Schwerpunkte und Leitfragen:	13
Konkretisierung Aufbau der Materie und ionisierende Strahlung	14
Obligatorische Experimente im Grundkurs der Qualifikationsphase	15
Leistungskurs Q1/Q2	16
Übersichtsraster Unterrichtsverlauf Leistungskurs Q1:	16
Konkretisierung Relativitätstheorie im LK	17
Konkretisierung Elektrizitätslehre und EM-Wellen im LK	18
Konkretisierung Bohrsches Atommodell im LK	19
Übersichtsraster Unterrichtsverlauf Leistungskurs Q2:	19
Konkretisierung Quantenphysik im LK	20
Konkretisierung Kernphysik und Radioaktivität im LK	21
Konkretisierung Elementarteilchen im LK	21
Grundsätze der Leistungsbewertung in der Sekundarstufe II	22
Art und Umfang der Klausuren:	22
Sonstige Mitarbeit:	22
Gültiakeit und Bezug zum KLP	23

Vorwort

Im seit dem 01.08.2014 gültigen neuen Kernlehrplan Physik für die gymnasiale Oberstufe wird besonders im Grundkursbereich erstmals die über Jahrhunderte gewachsene und bewährte Fachsystematik aufgegeben und durch vier erheblich allgemeiner gefasste Kompetenzbereiche ersetzt. Dem gegenüber verlieren die obligatorischen Inhaltsfelder an Bedeutung, das Schlüsselwort "exemplarisch" verdeutlicht dies.

Die Fachschaft Physik am GAT hat dieses schulinterne Curriculum für den Oberstufenunterricht entwickelt und darin verbindliche Inhaltsfelder, eine geeignete Reihenfolge der Themen und einen gemeinsamen Kontext festgelegt. Die Grundlagen der Leistungsbewertung und Klausurdauern sind ebenfalls definiert.

Die genannten Stundenkontingente sind Planungen und können im konkreten Einzelfall durchaus abgeändert werden!

Kompetenzbereiche:

- 1. Umgang mit Fachwissen U
- 2. Erkenntnisgewinnung E
- 3. Kommunikation K
- 4. Bewertung B

Die folgenden Erläuterungen zu den Kompetenzbereichen sind dem aktuell gültigen Kernlehrplan Physik Sek II (Heft 4721, 1. Auflage des MSW NRW) auf den Seiten 21 und 22 entnommen.

Umgang mit Fachwissen	Schülerinnen und Schüler können in Zusammenhängen mit eingegrenzter Komplexität
UF1 Wiedergabe	physikalische Phänomene und Zusammenhänge unter Verwendung von Theorien, übergeordneten Prinzipien/Gesetzen und Basiskonzepten beschreiben und erläutern,
UF2 Auswahl	zur Lösung physikalischer Probleme zielführend Definitionen, Konzepte sowie funktionale Beziehungen zwischen physikalischen Größen angemessen und begründet auswählen,
UF3 Systematisierung	physikalische Sachverhalte und Erkenntnisse nach fachlichen Kriterien ordnen und strukturieren,
UF4 Vernetzung	Zusammenhänge zwischen unterschiedlichen natürlichen bzw. technischen Vorgängen auf der Grundlage eines vernetzten physikalischen Wissens erschließen und aufzeigen.

Erkenntnis- gewinnung	Schülerinnen und Schüler können in Zusammenhängen mit eingegrenzter Komplexität
E1	in unterschiedlichen Kontexten physikalische Probleme identifizie-
Probleme und Fra-	ren, analysieren und in Form physikalischer Fragestellungen präzi-
gestellungen	sieren,
E2	kriteriengeleitet beobachten und messen sowie auch komplexe
Wahmehmung und	Apparaturen für Beobachtungen und Messungen erläutem und
Messung	sachgerecht verwenden,
E3 Hypothesen	mit Bezug auf Theorien, Modelle und Gesetzmäßigkeiten auf de- duktive Weise Hypothesen generieren sowie Verfahren zu ihrer Überprüfung ableiten.

23.11.2017 Seite 3 von 23

E4 Untersuchungen und Experimente	Experimente auch mit komplexen Versuchsplänen und Versuchs- aufbauten mit Bezug auf ihre Zielsetzungen erläutern und diese zielbezogen unter Beachtung fachlicher Qualitätskriterien durch- führen,
E5 Auswertung	Daten qualitativ und quantitativ im Hinblick auf Zusammenhänge, Regeln oder mathematisch zu formulierende Gesetzmäßigkeiten analysieren und Ergebnisse verallgemeinern,
E6 Modelle	Modelle entwickeln sowie physikalisch-technische Prozesse mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen erklären oder vorhersagen,
E7 Arbeits- und Denk- weisen	naturwissenschaftliches Arbeiten reflektieren sowie Veränderun- gen im Weltbild und in Denk- und Arbeitsweisen in ihrer histori- schen und kulturellen Entwicklung darstellen.

Kommunikation	Schülerinnen und Schüler können
K1 Dokumentation	Fragestellungen, Untersuchungen, Experimente und Daten nach gegebenen Strukturen dokumentieren und stimmig rekonstruieren, auch mit Unterstützung digitaler Werkzeuge,
K2 Recherche	in vorgegebenen Zusammenhängen selbstständig physikalisch- technische Fragestellungen mithilfe von Fachbüchern und ande- ren Quellen, auch einfachen historischen, Texten, bearbeiten,
K3 Präsentation	physikalische Sachverhalte, Arbeitsergebnisse und Erkenntnisse adressatengerecht sowie formal, sprachlich und fachlich korrekt in Kurzvorträgen oder kurzen Fachtexten darstellen,
K4 Argumentation	physikalische Aussagen und Behauptungen mit sachlich fundierten und überzeugenden Argumenten begründen bzw. kritisieren.

Bewertung	Schülerinnen und Schüler können
B1 Kriterien	bei Bewertungen in naturwissenschaftlich-technischen Zusammenhängen Bewertungskriterien angeben,
B2 Entscheidungen	für Bewertungen in physikalisch-technischen Zusammenhängen kriteriengeleitet Argumente abwägen und einen begründen Standpunkt beziehen,
B3 Werte und Normen	in bekannten Zusammenhängen Konflikte bei Auseinandersetzungen mit physikalisch-technischen Fragestellungen darstellen sowie mögliche Konfliktlösungen aufzeigen.

Besonders in der Q2 ist eine Kompetenzzuordnung zu einzelnen Unterrichtsreihen schwierig, da fast immer fast alle Kompetenzen gefördert werden. Hier sind dann nur Schwerpunkte angegeben.

Basiskonzepte:

- 1. Wechselwirkung
- 2. Energie
- 3. Struktur der Materie

Eine detaillierte Ausführung zu den Basiskonzepten findet sich im KLP auf den Seiten 11 und 12. Alle Inhalte des Physik-Unterrichtes lassen sich einem oder mehreren der Basiskonzepte zuordnen.

23.11.2017 Seite 4 von 23

Einführungsphase EPH

Übergeordnete Ziele sind vor allem:

- Vorbereitung Qualifikationsphase (Systematisierung)
- Grundlegende Konzepte und Sichtweisen für die Physik
- Harmonisierung der Vorkenntnisse
- Individuelle Förderung

Einziges Inhaltsfeld der EPH: Mechanik

Inhaltliche Schwerpunkte:	Durch die Fachschaft festgelegte Kontexte:
 Kräfte und Bewegungen Energie und Impuls Gravitation Schwingungen und Wellen 	KirmesphysikReise zum MarsMusik oder Lärm?
Basisko	onzepte:
Basiskonzept Wechselwirkung:	Basiskonzept Energie:
 Lineare Bewegungen (gleichförmig und beschleunigt), Newton'sche Theoreme, Reibungskräfte, Impuls, Stoßvorgänge Zentralkraft, Kreisbewegungen Gravitationsfeld, Gravitationsgesetz Wellenausbreitung 	 Mechanische Energieformen (Lage-, Spann- und kinetische Energie), Arbeit, Energiebilanzen Mechanische Leistung, Energie und Arbeit im Gravitationsfeld, Eigenschwingungen und Resonanz Basiskonzept Struktur der Materie: Masse Wellenausbreitung in Materie

Ebenfalls zu behandeln sind die Größen mechanische Leistung, Kraftstöße, Winkelgeschwindigkeit und Drehmoment (Hebelgesetze).

Die Verknüpfung der Inhalte mit den Kompetenzen wird ausführlich auf den Seiten 23 und 24 in KLP-PH-NRW aufgezeigt.

23.11.2017 Seite 5 von 23

Übersichtsraster Unterrichtsverlauf – gewählte Kontexte:

Kontext und Leitfrage	Inhaltliche Schwerpunkte	Geplanter Zeitbedarf:
Kirmesphysik Wieso schafft der Wagen einen Looping? Mögliche Fahrgeschäfte als Kontext: Fallturm, Achterbahn mit Looping, Steilwand-Fahren, Schiffschaukel, Autoscooter, Stuntshow	Kinetik Kräfte und beschleunigte Bewegungen Feder (Wiederholung aus SI) Arbeit, Energie, Energieerhaltung Mechanische Leistung Impuls, Impulserhaltung Zentralkräfte	50 Ustd.
Reise zum Mars Wird es Kolonien auf dem Mars geben?	Gravitation Kräfte und Bewegungen Energie und Impuls Weltenbilder	22 UStd.
Musik oder Lärm? Was macht den Ton?	Schwingungen und Wellen	18 Ustd.
Summe EPH: ca. 105h	durch Obligatorik verplant:	90 Ustd.

Damit stehen in der EPH nur etwa 15 Unterrichtsstunden für Vertiefungen, Exkurse, Wiederholungen usw. zur Verfügung!

Aufgrund der zunehmenden Heterogenität unserer Lerngruppen und abnehmenden mathematischen Vorkenntnissen legen wir in der Fachschaft Physik großen Wert auf eine gründliche Wiederholung und vertiefte Absicherung unentbehrlichen mathematischen Handwerkszeugs.

Das Thema "Medienkompetenz" ist der Physik-Fachschaft ein großes Anliegen. Hier haben wir in unserem Lehrplan an vielen Stellen verbindliche Nutzung von PC-basierten Mess- und Darstellungsverfahren verankert (CASSY, Videoanalyse, Excel, Applets, TI-CAS-Taschenrechner).

23.11.2017 Seite 6 von 23

Konkretisierung: Kirmesphysik

Ustd.	Inhalt:	Konkretisierung:	Komp.
4	Wiederholung Sek I	Organisatorisches, Rechnen mit 10er-Potenzen, Maßeinheiten, Vektoren, Umrechnen von Einheiten	
3		Definition von Geschwindigkeit, "Momentane" und "Mittlere Geschwindigkeit", Gleichförmige Bewegungen, s(t) - Diagramme, Interpretation v als Steigung, s als Fläche, Darstellung von Messwerten mit Excel Kontext: Bimmelbahn im Freizeitpark	UF2 UF3 E5 K1
10	Kinetik	Definition von Beschleunigung, Einheit erläutern, Gleichmäßig beschleunigte Bewegungen, v(t)-Diagramme, Zusammenhänge s(t), v(t) und a(t), allgemeine Bewegungsgleichung aufstellen und interpretieren, Diagramme interpretieren, Wurfparabeln Kontext: Fallturm, Wasserrutsche, Ferrari-Achterbahn, Stunt-Show (Sprung mit Motorrad über Autos) Experiment/Medium: Luftkissenbahn, Fallröhre oder Freihand-Versuche zum freien Fall und zu Wurfparabeln, Videoanalyse und Darstellung / Auswertung mit Excel	UF1 UF2 UF3 E1 E2 E4 E5 K1
10	Kräfte – statisch und dynamisch	Vektorielle Addition, Grundgleichung der Mechanik, Newton'sche Theoreme, schiefe Ebene mit / ohne Reibung und Kräftezerlegung vektoriell Kontext: Wildwasserbahn Experiment: Bestimmung von Federkonstanten, Luftkissenbahn oder Rollwagen, schiefe Ebene	UF1 UF2 UF3 E2 E3 E4 E5 K1
3		Definition und Veranschaulichung	UF1
9	Mechanische Arbeit und die Formen mechanischer Energie,	Erhaltungssätze, Umwandlungen zwischen mechanischen Energieformen, Herleitung des Hebelgesetzes) Experiment: Balkenwaage	UF2 UF3 UF4 E3 E4
4	mechanische Leistung, Impuls	Stoßvorgänge elastisch/inelastisch Kontext: Autoscooter Experiment: Luftkissenbahn	UF3 UF4 E3 E6
7	Kreisbewegungen	Fliehkraft und Zentripetalkraft Kontext: Kettenkarussell, Achterbahn, Schiffsschaukel, Steilwandfahren Experiment: Masse schwingt an Feder	UF3 UF4 E3 E6
50h	Planung	Kirmesphysik	

23.11.2017 Seite 7 von 23

Konkretisierung: Reise zum Mars

Ustd.	Inhalt:	Konkretisierung:	Komp.
3	Weltenbilder	Historische Entwicklung der Weltenbilder Aufbau von Sonnensystem und Universum Raketentriebwerke (Anwendung Impulserhaltung) Experiment: Wasserrakete Medium: Internet (DLR, NASA usw.) Exkursion: Planetarium	UF4 E4 E6 E7 K2 K3 B1
3	Newtons	Formulierung und Interpretation Cavendish-Experiment zur Bestimmung der Gravitationskonstanten qualitativ	E1 E2 E7
5	Gravitationsgesetz	Herleitung der Erdbeschleunigung, geostationäre Satelliten, das System Mond-Erde (Schwerpunkt und Gezeiten), kosmische Fluchtgeschwindigkeit	E1 E3 E6
3		Formulierung der Gesetze, Interpretation	E1 E3
2	Keplers Gesetze	Erhaltungssätze (Impuls, Drehimpuls und Energie) und deren Bezug zu den Kepler Gesetzen	UF4 E6 E7
3		Anwendungen: Bestimmung von astronomischen Größen mittels der Keplergesetze	UF4 E6 E7
3	Moderne Astrophysik	Exkurs: Astrophysik heute (aktuelle Forschung) Messung von astrophysikalischen Größen in weit entfernten Galaxien (Hubble, Rotverschiebung, Linienverbreiterung, Spektralanalyse, Schwarze Strahler). Einstein und die Relativitätstheorie Frage: Können wir "zu den Sternen" reisen?	E6 E7 K2 K3 K4 B1 B2
22h	Planung	Kontext "Reise zum Mars"	

23.11.2017 Seite 8 von 23

Konkretisierung: Musik oder Lärm?

USt.	Inhalt:	Konkretisierung:	Komp.
3	Töne kann man sehen	Erzeugung und Darstellung von harmonischen Tönen mittels Stimmgabel oder Monochord und Oszilloskop bzw. CASSY. Aufzeigen der Zusammenhänge Tonhöhe und Frequenz, Lautstärke und Amplitude. Schwebung Experiment: CASSY, Stimmgabeln, Monochord	UF1 E2 E5 K1 K3
2	Schwingungen	Grundgrößen	E1
2	Schwingungen (Grundlagen)	Mathematisierung: Harmonische Vorgänge – Die Sinusfunktion	E1
3		Mathematisches Pendel (experimentell)	E2 E4 E5
3	Mechanische Schwingungen im Detail	Federpendel (experimentell)	E2 E4 E5
1		Schwingende Saite (Monochord, qualitativ)	E2 E4
3	Von der Schwingung zur Welle	Schall als Welle, Messung der Schallgeschwindigkeit, Zusammenhang von Wellenlänge und Frequenz, Lautstärke	E1 E6
1	Töne analysieren	Fourierspektren und deren Klang	E1 E6
18h	Planung	Kontext "Musik oder Lärm?"	

23.11.2017 Seite 9 von 23

Grundkurs Q1 / Q2

Übersichtsraster Unterrichtsverlauf Grundkurs Q1 – Schwerpunkte und Leitfragen:

Kontext und Leitfrage	Inhaltliche Schwerpunkte, Schlüsselexperimente	Zeitbedarf:
Quantenobjekte 1: Erforschung des Elektrons Wie können Ladung und Masse von Elektronen beschrieben werden?	Das Elektron als Teilchen: Millikanversuch Braun'sche Röhre Fadenstrahlrohr	16 Ustd.
Quantenobjekte 2: Licht als Welle Wie kann man Wellenlängen messen?	 Das Licht als klassische Welle: Brechung am Prisma, Regenbogen Beugung an Doppelspalt und Gitter Bragg-Reflexion am Kristallgitter 	12 Ustd.
Quantenobjekte 3: Photonen – Licht als Teilchen Wie zeigen sich Teilcheneigenschaften?	Teilcheneigenschaften von Licht: • Lichtelektrischer Effekt • Röntgenstrahlung	8 Ustd.
Quantenobjekte 4: Elektronen als Wellen Gibt es beim Elektron auch Welleneigenschaften und wie kann man diese messen?	Welleneigenschaften von Elektronen: Beugung am Doppelspalt Beugung an Kristallen De Broeglie-Wellenlänge Interpretation und Unschärfe	6 Ustd.
Gewinnung und Transport von elektrischer Energie Wie kann man elektrische Energie erzeugen, transportieren und nutzen? (Alternativ nach QO1!)	 Elektrodynamik: Spannung und elektrische Energie Wechsel- und Gleichspannungen Magnetische Felder Induktion Wirbelströme 	22 Ustd.
Summe Ustd. insgesamt: ca. 90h	durch Obligatorik in Q1 verplant:	64 Ustd.

Damit liegt die Planung am GAT für den Grundkurs in der Stufe Q1 deutlich über dem Kernlehrplan, der etwa 56 Ustd. vorsieht. In der Q1 stehen üblicherweise etwa 90 Ustd. (GK, 3-stündig) zur Verfügung, so dass trotzdem noch ca. 26 Stunden für Vertiefungen usw. genutzt werden können.

23.11.2017 Seite 10 von 23

Konkretisierung Quantenobjekte und Induktion im Grundkurs

Ustd.	Inhalt:	Konkretisierung:	Komp.
1		Einleitung: "Wie stellen wir uns das Elektron vor? Welche Größen brauchen wir zu seiner Beschreibung?"	E1 E3
6		Bestimmung der elektrischen Ladung mit dem Millikan- Versuch, Braun'sche Röhre als Wiederholung der Wurfparabel. Beide Versuche werden im Experiment durchgeführt. Dabei ist auf das homogene elektrische Feld im Plattenkondensator einzugehen.	E2 E4 E5 K1 K3
4	QO 1 - Das Elektron als Teilchen	Bestimmung der Elektronenmasse mit dem Fadenstrahlrohr im Experiment. Die Formulierung der Lorentzkraft wird dabei behandelt.	E2 E4 E5 K1 K3
5 (+4)		Weitere Anwendungen der Lorentzkraft: Wien-Filter (gekreuzte Felder), Massenspektrometer, Zyklotron, Stromwaage (makroskopische Formulierung der Lorentzkraft). Diese Inhalte werden nur theoretisch erarbeitet. Das Zyklotron liefert einen eleganten Zugang zur SRT und erlaubt prinzipiell das Vorziehen dieses Blockes aus der Q2 in die Q1. Hierfür wären 4 Stunden zusätzlich in Q1 anstelle in Q2 einzuplanen!	UF4 K2 K3
2		Einleitung: Schwingungen und Wellen – Grundgrößen und Definitionen (Wiederholung aus der Mittelstufe), Leitfrage: "Wie kann ich Wellenlängen messen?"	UF1 UF2 E1
2		Prismen-Spektrometer, Zerlegung von weißem Licht (experimentell), Dispersion	E2 E3
5	QO 2 – Das Licht als Welle	Beugung am Gitter, Bestimmung der Wellenlänge eines Lasers (experimentell) Erarbeitung der Unterschiede zwischen Gitter und Prisma als Spektrometer, Linienspektrum einer Gasentladungslampe (experimentell, Vorgriff auf die Atomphysik)	E2 E3 E4 E5 E6 E7 K3
3		Analyse von Röntgenstrahlen – Bragg-Reflexion am Kristall, Drehkristall und Debye-Scherrer-Verfahren	E5 E6 E7

23.11.2017 Seite 11 von 23

6	QO 3 – Licht im Teilchenmodell,	Entladen eines Elektroskops (Hallwachs-Experiment), Lichtelektrischer Effekt und die Bestimmung von h (theoretisch), Umgekehrter LEE zur Bestimmung von h mit LED (experimentell)	E2 E4 E5 E6 K4
2	Photonen	Röntgenspektren (ohne charakteristische Spektren nach Moseley), h-Bestimmung aus der kurzwelligen Grenze (theoretisch)	E5 K2 K5
6	QO 4 – Elektronen als Wellen, der Welle-Teilchen- Dualismus	De Broeglie und historische Experimente zur Elektronenbeugung an Doppelspalt und Kristall, Interpretation der Wellenfunktion, Experimente mit einzelnen Photonen, Verknüpfung von Wellen- und Teilchenbild durch "Wahrscheinlichkeiten", Unschärfe	K2 K3 K4 B1 B2 B3
4		Spannung und elektrische Feldstärke am Beispiel des Plattenkondensators, Auf- und Entladen (experimentell), elektrische Energie	E3 E4 E5
2	Cavianua	Gleich- und Wechselspannungen (experimentell)	E4 K1
3	Gewinnung und Transport von elektrischer Energie (Optional kann dieser Bereich	Magnetische Felder und ihre Erzeugung in Spulen, Messung von magnetischen Feldern mit einer Hallsonde (experimentell)	E4 K1
3	zwischen QO1 und QO2 behandelt	Herleitung des Induktionsgesetzes und Interpretation	E6
10	werden!)	Anwendungen des Induktionsgesetzes: Generator (experimentell) Transformator (experimentell) Wirbelstrombremse (experimentell) KERS in der Formel 1	E3 E4 E5 K3 B1 B2
64h (+4h)	Planung	Quantenobjekte, Versorgung mit elektrischer Energie (+ möglicher Exkurs in die Relativitätstheorie)	

Der Bereich "Gewinnung und Transport elektrischer Energie" kann alternativ vorgezogen werden und im Anschluss an "QO1 – Elektronen als Teilchen" gesetzt werden!

23.11.2017 Seite 12 von 23

Übersichtsraster Unterrichtsverlauf Grundkurs Q2 – Schwerpunkte und Leitfragen:

Kontext und Leitfrage	Inhaltliche Schwerpunkte, Schlüsselexperimente	Zeitbedarf:
Erforschung des Mikrokosmos Wie gewinnt man Informationen zum Aufbau der Materie?	Strahlung und Materie - Atomhülle • Energiequantelung der Atomhülle • Spektrum der elektromagnetischen Strahlung	16 Ustd.
Mensch und Strahlung Wie wirkt radioaktive Strahlung?	Strahlung und Materie – Atomkerne • Aufbau der Kerne und Isotope • Kernumwandlungen • Ionisierende Strahlung	15 Ustd.
Aktuelle Forschung: CERN und DESY – Die Suche nach den kleinsten Bausteinen des Universums	Das Standardmodell der Elementarteilchen	6 Ustd.
Relativitätstheorie: Alltag oder nur eine Theorie?	Relativität von Raum und Zeit • Konstanz der Lichtgeschwindigkeit • Zeitdilatation • Dynamische Masse • E=mc²	12 Ustd.
Summe Ustd. GK Q2 insgesamt: ca. 50	durch Obligatorik in Q2 verplant:	49 Ustd.

Damit liegt die Planung am GAT für den Grundkurs in der Stufe Q2 deutlich über dem Kernlehrplan, der etwa 41h vorsieht. In der Q2 stehen üblicherweise nur etwa 50h Unterricht (GK, 3-stündig) zur Verfügung. Nach Möglichkeit sind daher Inhalte in die Q1 zu verlagern.

Die obligatorischen Versuche in der Qualifikationsphase sind unbedingt komplett zu behandeln!

23.11.2017 Seite 13 von 23

Konkretisierung Aufbau der Materie und ionisierende Strahlung

Ustd.	Inhalt:	Konkretisierung:	Komp.
4	Erforschung des	Linienspektren (experimentell)	UF4 E4 E5
2		Franck-Hertz-Versuch (theoretisch)	E5 E6 E7
5	Mikrokosmos – Aufbau der Materie (Energiequantelung	Das Bohr'sche Atommodell	E6 E7 B1
4	der Atomhülle)	Röntgenspektren und das Gesetz von Moseley	E3 E5 E6
1		Das Spektrum der elektromagnetischen Strahlung	UF3
2		Aufbau der Kerne, Umgang mit der Nuklidkarte	UF1 UF2 UF3
3		Radioaktive Zerfälle, Zerfallsreihen, Halbwertszeit und Altersbestimmung	UF4 E5
3	Mensch und Strahlung – Wie wirkt radioaktive	Arten und Eigenschaften, biologische Wirkung von ionisierender Strahlung	B1 B2 B3
4	Strahlung? (Aufbau der Atomkerne)	Messung von Gammaspektren (experimentell), Schutz durch Abschirmung (experimentell)	E4 E5 B2 B3
3		Kernfusion und Kernspaltung	K2 K3 K4 B2 B3
6	Aktuelle Forschung – DESY und CERN: Die Suche nach den kleinsten Bausteinen	Das Standardmodell der Elementarteilchen	E6 E7 K2 K3
12	Relativitätstheorie – Alles nur eine Theorie?	Relativität von Raum und Zeit Konstanz der Lichtgeschwindigkeit Zeitdilatation und Längenkontraktion Dynamische Masse Energie-Massen-Äquivalenz	E6 E7 K4
49	Planung	Atom- und Kernphysik, Physik des 20. Jahrhunderts, Relativitätstheorie (möglichst Teile der RT in die Q1 vorziehen, da nur etwa 50 Ustd. im GK Q2 verfügbar sind!)	

23.11.2017 Seite 14 von 23

Obligatorische Experimente im Grundkurs der Qualifikationsphase

Quelle: www.bezreg-duesseldorf.nrw.de/lerntreffs/physik/pages/fortbildung/klpsek2/Versuche-in-der-Qualifikationsphase.pdf vom 27.10.2017

		Obligatorische Versuche im Grundkurs
Q1.1		Quantenobjekte
	_	Millikan-Versuch
	2	Elektronenbeugung
	3	Fadenstrahlrohr
	4	Doppelspalt
	5	Gitter
	6	Photoeffekt
	7	Wellenwanne
Q1.2		Elektrodynamik
	8	Leiterschaukel
	9	Leiterschleife
	10	Transformator
	11	Thomson'scher Ringversuch
	12	Generator
	13	Oszilloskop oder Messwerterfassungssystem
	14	Modellexperiment zu Freileitungen
Q2.1		Strahlung und Materie
	15	Geiger-Müller-Zählrohr
	16	Absorptionsexperimente
	17	Linienspektren
	18	Franck-Hertz-Versuch
	19	Charakteristische Röntgenspektren
	20	Flammenfärbung
	21	Sonnenspektrum
Q2.2		Relativität von Raum und Zeit
	22	Michelson-Morley-Experiment
	23	Lichtuhr
	24	Myonenzerfall
	25	Zyklotron

20 21 22 23 24 25 26	2		Beispielhafte Versuche im Leistungskurs
20 21 20 22 27 26 26 27 27 27 27 27 27 27 27 27 27 27 27 27	2	_	Michelson-Morley-Experiment
10 10 10 11 11 11 11 12 13 13 13 14 15 16 17 18 19 19 20 21 21 22 23 24 25 26 27 28 29 29 29 20 20 20 20 20 20 20 20 20 20		2	Lichtuhr
10 10 10 10 10 10 10 10 10 10 10 10 10 1		ω	Myonenzerfall
5 6 7 7 10 11 11 13 13 13 14 15 16 17 18 19 20 21 21 22 23 24 25 26 27 27 28 29 29 20 20 20 20 20 20 20 20 20 20		4	Bertozzi-Versuch
5 6 7 8 9 9 11 11 12 13 13 13 14 15 16 17 17 18 19 20 21 21 22 23 24 25 26 27 27 28 29 29 29 20 20 20 20 20 20 20 20 20 20	2		Elektrik
6 8 8 9 11 11 12 13 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27		5	Elektrostatik, Influenz
7 8 9 9 10 11 11 12 13 13 14 14 16 16 17 17 17 18 19 20 21 21 21 22 23 24 25 26 27 27 27 28 28 29 29 29 29 29 29 29 29 29 29 29 29 29		6	Kondensator, Spule
8 9 11 11 12 13 13 14 15 16 17 17 18 19 20 21 21 22 23 24 25 26 27		7	Elektronenstrahlröhre
9 10 11 11 12 13 14 15 16 16 17 17 17 18 19 20 21 21 22 23 24 26 27		8	
10 11 12 13 14 14 15 16 16 17 17 18 19 20 21 21 22 23 23 24 25 26 27		9	Schwingkreis
11 12 13 14 15 16 17 17 18 19 20 21 21 22 22 23 24 26 26		10	Hertz'scher Dipol
12 13 14 16 16 17 17 18 19 20 21 21 22 22 23 24 25 26 27		⇉	Reflexion, Brechung, Beugung, Interferenz
13 14 15 16 17 17 17 18 19 20 21 21 21 22 23 24 25 26 27		12	
14 15 16 16 17 17 19 20 20 21 21 22 23 24 25 26 27		13	Hall-Effekt
15 16 17 17 18 19 20 21 21 22 22 23 23 24 26 26 27		14	Zyklotron
16 17 18 19 20 21 21 22 22 23 24 25 26 27		15	Massenspektrometer
17 18 19 20 21 21 22 22 23 24 25 26 27		16	Erzeugung einer Wechselspannung
18 19 20 21 21 22 23 24 25 26 27		17	Interferenz am Doppelspalt und Gitter
18 19 20 21 21 22 23 24 25 26 26			
18 19 20 21 21 21 23 23 24 26 26 27	Q2		Quantenphysik
19 20 21 21 22 23 24 25 26 26		18	Photoeffekt
20 21 21 22 23 24 25 26 27		19	Röntgenstrahlung, Röntgenspektrum
21 22 23 24 25 26 26		20	Elektronenbeugung
21 22 23 24 25 26 27			
	<u>გ</u>		Atom-, Kern- und Elementarteilchenphysik
		21	Ablenkung von Strahlung im Magnetfeld
		22	Absorptionsexperimente
		23	Rutherford scher Streuversuch
		24	Linienspektren
_		25	Geiger-Müller Zählrohr, Halbleiterdetektor
_		26	Franck-Hertz-Versuch
		27	Experimentelle Bestimmung von Halbwertszeiten

23.11.2017 Seite 15 von 23

Experimente in der Qualifikationsphase

Leistungskurs Q1/Q2

Übersichtsraster Unterrichtsverlauf Leistungskurs Q1:

Themenfeld	Inhaltliche Schwerpunkte, Schlüsselexperimente	Zeitbedarf:
Relativitätstheorie	 Konstanz der Lichtgeschwindigkeit Gleichzeitigkeit Zeitdilatation und Längenkontraktion Ruhe- und dynamische Masse Energie und Masse Einfluss von Gravitation auf die Zeit ergänzend zum KLP: Energie und Impuls optischer Dopplereffekt 	24 Ustd
Elektrizitätslehre und elektromagnetische Wellen	 Eigenschaften von elektrischen Ladungen und deren Feldern Bewegung von Ladungsträgern in elektrischen und magnetischen Feldern Induktion Elektromagnetische Schwingungen und Wellen Beugung und Interferenz 	66 Ustd
Das Bohrsche Atommodell (abweichend vom KLP vorgezogen!)	 Rutherford und das Kern-Hülle Modell Bohr und die Balmer-Linien Absorptions- und Emissionsspektren Franck-Hertz-Versuch Röntgenspektren 	22 Ustd.
	durch Obligatorik in Q1 verplant:	112 Ustd.

Damit liegt die Planung am GAT für den Leistungskurs in der Stufe Q1 bei etwa 112 Ustd. In der Q1 stehen üblicherweise etwa 150 Ustd. für einen 5-stündigen LK zur Verfügung, so dass rund 38 Stunden für Vertiefungen usw. genutzt werden können. Die Fachkonferenz legt fest, dass diese Zeit besonders auch zum Einüben von Abituraufgaben zu nutzen ist.

23.11.2017 Seite 16 von 23

Konkretisierung Relativitätstheorie im LK

Ustd.	Inhalt:	Konkretisierung:	Komp.
2		Einleitung: "Das Experiment von Michelson-Morley und die Konstanz der Lichtgeschwindigkeit"	E5 E6 UF2 UF4
8		Die Einstein'sche Licht-Uhr und das Problem der Gleichzeitigkeit Herleitung relativistischer Faktor und die Zeitdilatation Herleitung Längenkontraktion Hafele-Keating-Experiment Interpretation und Anwendung auf Myonen	E1 E4 E6 E7 K2 K3 UF1 UF4
6	Relativitätstheorie	Rel. Addition von Geschwindigkeiten optischer Dopplereffekt und Astrophysik Exkurs: Reisen durch den Weltraum	E3 E6 E7 K3 K4 B2 B3 B4
8		E=mc², Ruhemasse und Ruheenergie dynamische Masse kinetische Energie und Energie-Impuls Interpretation und Anwendungen auf Zyklotron, radioaktiven Zerfall, Annihilation	E3 E6 UF3 UF4
24		Die aktuellen Forschungsergebnisse zum Thema "Gravitationswellen" sind im Unterricht zu behandeln!	

23.11.2017 Seite 17 von 23

Konkretisierung Elektrizitätslehre und EM-Wellen im LK

Ustd.	Inhalt:	Konkretisierung:	Komp.
4	Einleitung	Wiederholung und Einleitung: "Gravitationsfelder" und deren Analogie zu elektrischen und magnetischen Feldern sowie Wiederholung der bekannten Grundgrößen der Elektrizitätslehre aus der Mittelstufe	E1 E6 UF3 UF4
14	Elektrisches Feld	Definition des elektrischen Feldes, Einheit und vektorieller Charakter, Influenz Millikan-Versuch Zusammenhang von Spannung und elektrischer Feldstärke Elektronenkanone (ausführlich) Braun'sche Röhre Plattenkondensator als Ladungs- und Energiespeicher (ohne Einschaltvorgänge)	E1 E2 E3 E4 (!) E5 E6 E7 (!) K1 K3 UF1 UF2
4		Definition und Erzeugung magnetischer Felder, magnetische Feldstärke, Einheiten, Dipole, Permeabilität	E6 K2 UF3 UF4
16	Magnetisches Feld	Lorentzkraft und ihre Anwendungen: Leiterschaukel / Stromwaage Fadenstrahlrohr Hall-Effekt Zyklotron Massenspektrometer Wienscher Geschwindigkeitsfilter	E2 E3 E4 (!) E5 K1 K2 K3
8		Induktion und deren Anwendungen: Generator Transformator	UF2 UF3 UF4 (!)
20	Schwingungen und Wellen	Ein- und Ausschaltvorgänge bei Spulen und Kondensatoren Schwingkreis (RLC-Kreis) EM-Wellen am Beispiel von Mikrowellen (Diskussion der "Gefährlichkeit nicht-ionisierender Strahlung) Licht als EM-Welle, Beugung, Interferenz an Spalt und Gitter (Überleitung zu Atommodellen!)	wie vor, dazu B1 B2 B3
66		Relativistische Effekte sind zu wiederholen! Licht als EM-Welle dient als Überleitung zum Bohrschen Atommodell.	

23.11.2017 Seite 18 von 23

Konkretisierung Bohrsches Atommodell im LK

Ustd.	Inhalt:	Konkretisierung:	Komp.
2	Einleitung	Wiederholung "Aufbau des PSE" und Erinnerung an die Hauptgruppen der Chemie	K2 UF1 UF4 (!)
20	Einfache Atommodelle	Rutherford und das Kern-Hülle-Modell Emissions- und Absorptionsspektren (Balmer, Fraunhofer) Bohrsches Atommodell (ausführlich) Moseley und charakteristische Röntgenstrahlung (dabei auch Bragg und Drehkristall / Debye-Scherer behandeln!) Wasserstoffartige Atome, effektive Kernladungen Grenzen der klassischen Atommodelle	E3 E6 E7 (!) B4 (!) UF3
22		Verschiedene Spektrometer ausführlich - auch experimentell - behandeln!	

Übersichtsraster Unterrichtsverlauf Leistungskurs Q2:

Themenfeld	Inhaltliche Schwerpunkte, Schlüsselexperimente	Zeitbedarf:
Quantenphysik	 Welle-Teilchen-Dualismus: Lichtelektrischer Effekt Lichtquantenhypothese Planck'sches Wirkungsquantum Röntgenstrahlung Streuung und Beugung von Elektronen De Broeglie-Hypothese Wellenfunktion und Wahrscheinlichkeiten Linearer Potentialtopf und das Atommodell in der Quantenphysik Heisenbergsche Unschärfe Energiequantelung 	24 Ustd
Kernphysik und Radioaktivität	 Kernbausteine Radioaktiver Zerfall Ionisierende Strahlung Kernspaltung und Kernfusion 	24 Ustd
Elementarteilchen	 Überblick und Klassifikation der Elementarteilchen Austauschteilchen aktuelle Forschung 	12 Ustd.
	durch Obligatorik in Q2 verplant:	60 Ustd.

23.11.2017 Seite 19 von 23

Damit liegt die Planung am GAT für den Leistungskurs in der Stufe Q2 bei etwa 60 Ustd. In der Q2 stehen üblicherweise etwa 80 Ustd. für einen 5-stündigen LK zur Verfügung, so dass rund 20 Stunden für Vertiefungen usw. und besonders für die Vorbereitung der Abiturprüfung genutzt werden können.

Konkretisierung Quantenphysik im LK

Ustd.	Inhalt:	Konkretisierung:	Komp.
6	Licht im Teilchenmodell,	Entladen eines Elektroskops (Hallwachs-Experiment), Lichtelektrischer Effekt und die Bestimmung von h (theoretisch), umgekehrter LEE zur Bestimmung von h mit LED (experimentell)	E2 E4 E5 E6 K4
6	Photonen	Röntgenspektren (Bremsstrahlung), h-Bestimmung aus der kurzwelligen Grenze (theoretisch), Compton-Effekt	E5 K2 K5
12	Elektronen als Wellen Welle-Teilchen- Dualismus	De Broeglie und historische Experimente zur Elektronenbeugung an Doppelspalt und Kristall, Interpretation der Wellenfunktion, Experimente mit einzelnen Photonen, Verknüpfung von Wellen- und Teilchenbild durch "Wahrscheinlichkeiten", Heisenbergsche Unschärfe Anwendungen auf Atommodelle Linearer Potentialtopf und gequantelte Energien	K2 K3 K4 B1 B2 B3
24		auch Bezüge zur Chemie (Fächerverbindend) über Orbitale und die Schrödinger-Gleichung herstellen	

23.11.2017 Seite 20 von 23

Konkretisierung Kernphysik und Radioaktivität im LK

Ustd.	Inhalt:	Konkretisierung:	
3	Radioaktivität und Kernphysik	Aufbau der Kerne, Umgang mit der Nuklidkarte	
4		Radioaktive Zerfälle, Zerfallsreihen, Halbwertszeit und Altersbestimmung	UF4 E5
3		Arten und Eigenschaften, biologische Wirkung von ionisierender Strahlung	
6		Messung von Gammaspektren (experimentell), Schutz durch Abschirmung (experimentell)	E4 E5 B2 B3
8		Kernfusion und Kernspaltung	K2 K3 K4 B2 B3
24		Bei den Themen Kernfusion und Kernspaltung unbedingt genügend Raum für aktuelle Forschungsergebnisse und für eine Diskussion über Kernenergie einräumen!	

Konkretisierung Elementarteilchen im LK

Ustd.	Inhalt:	Konkretisierung:	Komp.
12	Aktuelle Forschung – DESY und CERN: Die Suche nach den kleinsten Bausteinen	Das Standardmodell der Elementarteilchen Austauschteilchen und fundamentale Kräfte Überblick und Klassifikation	E6 E7 K2 K3
12		Mögliche Exkursionen zu den Universitäten Köln oder Bonn bieten sich in diesem Kontext an!	

23.11.2017 Seite 21 von 23

2-stündig

Grundsätze der Leistungsbewertung in der Sekundarstufe II

Art und Umfang der Klausuren:

EPH:

		3
	2 Klausuren im zweiten Halbjahr	2-stündig
Q1 (GK):	2 Klausuren je Halbjahr	2-stündig
Q1 (LK):	2 Klausuren je Halbjahr	3-stündig

Q2 (GK): 2 Klausuren je Halbjahr 3-stündig
Q2 (LK): 2 Klausuren im 1. Halbjahr 4-stündig

1 Klausur im ersten Halbjahr

1 Klausur (Vorabiturklausur) im 2. Halbj. 4,25h (Zeitstunden)

In der Stufe Q1 kann im zweiten Halbjahr die erste Klausur durch eine Facharbeit ersetzt werden.

Sonstige Mitarbeit:

Schriftliche Überprüfungen: Pro Halbjahr sind angekündigt ein bis zwei jeweils etwa 20minütige schriftliche Überprüfungen des Unterrichtsstoffes der letzten vier Unterrichtsstunden zu schreiben. Die Gewichtung dieser Übungen entspricht der Zahl der inhaltlich zugeordneten Unterrichtsstunden.

Experimentelles Arbeiten: Der (selbstständigen) Planung, Durchführung und Auswertung von Schüler- oder Demonstrationsexperimenten ist besonderes Gewicht beizumessen.

Hausaufgaben: Das Anfertigen von Hausaufgaben gehört nach § 42 (3) SchG zu den Pflichten der Schüler und Schülerinnen. Unterrichtsbeiträge auf der Basis von Hausaufgaben werden zur Leistungsbewertung herangezogen. Hierzu sind Hausaufgaben regelmäßig zu kontrollieren und zu besprechen, bei Bedarf auch schriftlich zu überprüfen.

Heftführung: Die formale Heftführung als solche wird nicht in der Fachnote erfasst. Dagegen werden eigenständige Leistungen z.B. bei der Bearbeitung von Arbeitsaufträgen in der Stunde, der Formulierung von Auswertungen usw. zur Leistungsbewertung herangezogen. Ein besonderer Augenmerk ist auf sauberes, exaktes Zeichnen und (fach-) sprachlich angemessenes, korrektes Formulieren zu legen. Hierzu sind Hefte regelmäßig zu kontrollieren, bei Bedarf auch kursweise einzusammeln.

Besondere Lernleistungen: Referate, Kurzvorträge, Miniprojekte usw. sind regelmäßig und in allen Stufen auf freiwilliger Basis anzubieten und mit entsprechendem Gewicht in der Leistungsbewertung zu berücksichtigen. Diese Lernleistungen sollen besonders zur Optimierung der Binnendifferenzierung in heterogenen Lerngruppen herangezogen werden.

23.11.2017 Seite 22 von 23

Gültigkeit und Bezug zum KLP

Dieser schulinterne Kernlehrplan wird mit Fachkonferenzbeschluss vom 23.11.2017 gültig.

Er versteht sich immer und in allen Teilen ergänzend zum jeweilig geltenden Kernlehrplan Physik für die Sekundarstufe II an Gymnasien und Gesamtschulen in Nordrhein-Westfalen. Besonders die genannten Kompetenzen sind im Kernlehrplan an einigen Stellen vertieft ausgeführt und müssen bei allen Unterrichtsvorhaben beachtet werden.

Die Fachschaft Physik am GAT, vertreten durch den Vorsitzenden

Dr. Arnold Schroeder, OStR

23.11.2017 Seite 23 von 23